Descrição O Matlab inclui funções chamadas movavg e tsmovavg (média móvel de séries temporais) na Caixa de Ferramentas Financeira, o movAv foi projetado para replicar a funcionalidade básica destes. O código aqui fornece um bom exemplo de gerenciamento de índices dentro de loops, o que pode ser confuso para começar. Ive deliberadamente mantido o código curto e simples para manter este processo claro. O movAv executa uma média móvel simples que pode ser usada para recuperar dados ruidosos em algumas situações. Funciona tomando uma média da entrada (y) sobre uma janela de tempo deslizante, cujo tamanho é especificado por n. Quanto maior for n, maior a quantidade de suavização do efeito de n é relativa ao comprimento do vetor de entrada y. E efetivamente (bem, tipo de) cria um filtro de freqüência lowpass - veja a seção de exemplos e considerações. Como a quantidade de suavização fornecida por cada valor de n é relativa ao comprimento do vetor de entrada, sempre vale a pena testar diferentes valores para ver o que é apropriado. Lembre-se também de que n pontos são perdidos em cada média se n é 100, os primeiros 99 pontos do vetor de entrada não contêm dados suficientes para uma média de 100pt. Isto pode ser evitado um pouco empilhando médias, por exemplo, o código eo gráfico abaixo comparam um número de diferentes médias de janela de comprimento. Observe como liso 1010pt é comparado a uma única 20pt média. Em ambos os casos, 20 pontos de dados são perdidos no total. Criar xaxis x1: 0.01: 5 Gerar ruído noiseReps 4 ruído repmat (randn (1, ceil (numel (x) noiseReps)), noiseReps, 1) reestruturação de ruído (ruído, 1, X) 10noise (1: length (x)) Médias de Perfrom: y2 movAv (y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 pt (X, y, y2, y3, y4, y5, y6) legenda (dados brutos, média móvel 10pt, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel Y) título (Comparação de médias móveis) movAv. m função de execução do programa movAv (y, n) A primeira linha define o nome das funções, entradas e saídas. A entrada x deve ser um vetor de dados para realizar a média em, n deve ser o número de pontos a executar a média sobre a saída conterá os dados médios retornados pela função. Prealocar a saída outputNaN (1, numel (y)) Encontrar o ponto médio de n midPoint round (n2) O trabalho principal da função é feito no loop for, mas antes de iniciar duas coisas são preparadas. Em primeiro lugar a saída é pré-alocada como NaNs, isso serviu dois propósitos. Em primeiro lugar, a pré-alocação é geralmente uma boa prática, pois reduz a memória que o Matlab tem de fazer, em segundo lugar, torna muito fácil colocar os dados médios em uma saída do mesmo tamanho do vetor de entrada. Isto significa que o mesmo xaxis pode ser usado mais tarde para ambos, o que é conveniente para plotar, alternativamente, os NaNs podem ser removidos mais tarde em uma linha de código (output output (A variável midPoint será usada para alinhar os dados no vetor de saída. N 10, 10 pontos serão perdidos porque, para os primeiros 9 pontos do vetor de entrada, não há dados suficientes para tomar uma média de 10. Como a saída será menor do que a entrada, ele precisa ser alinhado corretamente. Ser usado para que uma quantidade igual de dados seja perdida no início e no fim e a entrada seja mantida alinhada com a saída pelos buffers NaN criados quando a saída de pré-alocação for. Over (a: b) ban Calcular a saída média (amidPoint) mean (y (a: b)) end No loop for, uma média é tomada em cada segmento consecutivo da entrada. Definido como 1 até o comprimento da entrada (y), menos os dados que serão perdidos (n).Se a entrada é de 100 pontos lo Ng e n é 10, o ciclo irá decorrer de (a) 1 a 90. Isto significa a proporciona o primeiro índice do segmento a ser calculado a média. O segundo índice (b) é simplesmente an-1. Assim, na primeira iteração, a1. N10. Assim b 11-1 10. A primeira média é tomada sobre y (a: b). Ou x (1:10). A média desse segmento, que é um valor único, é armazenada na saída no índice amidPoint. Ou 156. Na segunda iteração, a2. B 210-1 11. Assim a média é tomada sobre x (2:11) e armazenada na saída (7). Na última iteração do laço para uma entrada de comprimento 100, a91. B 9010-1 100 assim que a média é tomada sobre x (91: 100) e armazenada na saída (95). Isto deixa a saída com um total de n (10) valores de NaN no índice (1: 5) e (96: 100). Exemplos e considerações As médias móveis são úteis em algumas situações, mas nem sempre são a melhor escolha. Aqui estão dois exemplos onde eles não são necessariamente ótimos. Calibração do microfone Este conjunto de dados representa os níveis de cada freqüência produzida por um alto-falante e gravada por um microfone com uma resposta linear conhecida. A saída do alto-falante varia com a freqüência, mas podemos corrigir essa variação com os dados de calibração - a saída pode ser ajustada em nível para considerar as flutuações na calibração. Observe que os dados brutos são barulhentos - isso significa que uma pequena mudança de freqüência parece exigir uma grande alteração errática no nível a ser considerado. É este realista Ou é este um produto do ambiente de gravação É razoável, neste caso, para aplicar uma média móvel que suaviza a curva de nível de freqüência para fornecer uma curva de calibração que é ligeiramente menos errático. Mas por que isso não é o ideal neste exemplo? Mais dados seriam melhores - múltiplas calibrações executadas em média destruiriam o ruído no sistema (enquanto o seu aleatório) e fornecessem uma curva com detalhes menos sutis perdidos. A média móvel pode somente aproximar isto, e pode remover alguns mergulhos da freqüência mais elevada e os picos da curva que realmente existem. Seno ondas Usando uma média móvel em ondas senoidal destaca dois pontos: A questão geral de escolher um número razoável de pontos para realizar a média mais. Seu simples, mas há métodos mais eficazes de análise de sinal do que a média dos sinais oscilantes no domínio do tempo. Neste gráfico, a onda sinusoidal original é plotada em azul. O ruído é adicionado e plotado como a curva laranja. Uma média móvel é realizada em números diferentes de pontos para ver se a onda original pode ser recuperada. 5 e 10 pontos fornecem resultados razoáveis, mas não removam o ruído inteiramente, onde como um número maior de pontos começa a perder detalhe de amplitude como a média estende-se sobre fases diferentes (lembre-se que a onda oscila em torno de zero e média (-1 1) 0) . Uma abordagem alternativa seria construir um filtro passa-baixa que possa ser aplicado ao sinal no domínio da frequência. Eu não vou entrar em detalhes, pois vai além do escopo deste artigo, mas como o ruído é consideravelmente maior freqüência do que a freqüência das ondas fundamental, seria bastante fácil, neste caso, para construir um filtro passa-baixa que irá remover a alta freqüência Ruído. Usando MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e acrescentar a média móvel para a matriz que eu estou tentando calcular a média móvel de 3 dias de baixo para cima da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: Tentei implementar o comando conv, mas estou recebendo um erro. Aqui está o comando conv que eu tenho tentado usar na segunda coluna da matriz a: A saída que desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu gostaria muito. Obrigado Para a coluna 2 da matriz a, estou computando a média móvel de 3 dias da seguinte maneira e colocando o resultado na coluna 4 da matriz a (I renomeado como a matriz 39 como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14, 11 é 14 a média de 3 dias de 14, 11, 8 é 11 a média de 3 dias de 11, 8, 5 é 8 ea média de 3 dias de 8, 5, 2 é 5. Não há nenhum valor nas 2 linhas inferiores para a 4a coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faz sentido ndash Aaron Jun 12 13 em 1:28 Em geral, seria útil se você mostrar o erro. Neste caso você está fazendo duas coisas erradas: Primeiro, sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Segundo, observe o tamanho de c. Você não pode apenas caber c em um. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você quer. Em vez disso, você é forçado a usar um par de linhas: Como estimar NaN com a média móvel ponderada no Matlab Os NaNs em seu problema, pelo menos no exemplo, estão apenas lá para ajustar o tamanho da matriz para plotagem e todos podem ser removidos. Você percebe que este código produz o mesmo enredo sem truques NaN bagunça. Se seus dados em z contém NaN, você precisa removê-los usando o comando isnan que lhe dá de volta um booleano Eu não tenho idéia o que você quer fazer, mas aqui está um exemplo isnan (z (i)) yi1 (i) a (1) Se o valor de z for NaN, então a melhor previsão é que não alterou o índice de índice, i armazena o índice (i-1) (i-1) Onde eu não tinha nenhuma pista fim yi1 (índice) NaN atributos NaN para todo o valor onde eu não tinha idéia, então talvez melhor não plotá-los. (1: 10, z, o:) manter na trama (2: 11, yi1, g-) legenda (valores reais, previsão: 0.9) retenção Recomendar 2 RecomendaçõesDocumentação M movmean (A, k) Uma matriz de valores de k pontos médios locais, onde cada média é calculada sobre uma janela deslizante de comprimento k através de elementos vizinhos de A. Quando k é ímpar, a janela é centrada sobre o elemento na posição atual. Quando k é par, a janela é centrada sobre os elementos atuais e anteriores. O tamanho da janela é truncado automaticamente nos pontos de extremidade quando não há elementos suficientes para preencher a janela. Quando a janela é truncada, a média é assumida apenas os elementos que preenchem a janela. M é do mesmo tamanho que A. Se A é um vetor, então movmean opera ao longo do comprimento do vetor. Se A é uma matriz multidimensional, então movmean opera ao longo da primeira dimensão da matriz cujo tamanho não é igual a 1. M movmean (A, kb kf) calcula a média com uma janela de comprimento kbkf1 que inclui o elemento na posição atual, Para trás, e elementos kf para a frente. M movmean (, dim) retorna a matriz de médias móveis ao longo da dimensão dim para qualquer uma das sintaxes anteriores. Por exemplo, se A é uma matriz, então movmean (A, k, 2) opera ao longo das colunas de A. calculando a média deslizante de k-element para cada linha. M movmean (, nanflag) especifica se deve incluir ou omitir valores NaN a partir do cálculo para qualquer uma das sintaxes anteriores. Movmean (A, k, includenan) inclui todos os valores de NaN no cálculo enquanto movmean (A, k, omitnan) os ignora e calcula a média em menos pontos. M movmean (, Endpoints, endptmethod) especifica um método para manipulação de nós de extremidade, usando Endpoints e um de encolher. descartar. encher. Ou um valor escalar ou lógico. Por exemplo, movmean (A, k, Endpoints, descarte) só produz valores médios calculados com exatamente k elementos distintos de A. descartando cálculos de endpoint reduzidos. Escolha o seu país
No comments:
Post a Comment